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Abstract

Providing reliable model uncertainty estimates is
imperative to enabling robust decision making
by autonomous agents and humans alike. While
recently there have been significant advances in
confidence calibration for trained models, exam-
ples with poor calibration persist in most cal-
ibrated models. Consequently, multiple tech-
niques have been proposed that leverage label-
invariant transformations of the input (i.e., an in-
put manifold) to improve worst-case confidence
calibration. However, manifold-based confi-
dence calibration techniques generally do not
scale and/or require expensive retraining when
applied to models with large input spaces (e.g.,
ImageNet). In this paper, we present the re-
cursive lossy label-invariant calibration (ReCal)
technique that leverages label-invariant transfor-
mations of the input that induce a loss of discrim-
inatory information to recursively group (and cal-
ibrate) inputs – without requiring model retrain-
ing. We show that ReCal outperforms other cali-
bration methods on multiple datasets, especially,
on large-scale datasets such as ImageNet.

1 Introduction

Despite the success of machine learning predictions in var-
ious applications including image classifications (He et al.,
2016; Zagoruyko and Komodakis, 2016; Xie et al., 2017),
speech recognition (Graves et al., 2013; Wang et al., 2019),
games (Mnih et al., 2013; Silver et al., 2017), and med-
ical research (Rajpurkar et al., 2018), estimating predic-
tion confidence has a different story. As observed in Guo
et al. (2017), many modern neural networks are miscal-
ibrated, i.e., they are over-confident in their predictions.
As machine learning expands to safety-critical applica-
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tions such as self-driving cars, autonomous pilots, and au-
tonomous medical systems, accurately estimating confi-
dence becomes imperative for robust decision making.

Consequently, various approaches have been introduced to
address the problem of estimating confidence. Bayesian
techniques (Gal and Ghahramani, 2016; Zhang et al., 2017;
Khan et al., 2018; Chang et al., 2019) provide a means
of computing the posterior distribution of models for es-
timating confidence, but suffer from computational limita-
tions. Also proposed are techniques that change the origi-
nal model estimates (Tran et al., 2019; Kumar et al., 2018;
Seo et al., 2019), but these techniques have the disadvan-
tage that they require re-training the model and do not guar-
antee the accuracy of the original model. Lastly, there
have been many post-hoc approaches proposed that learn a
model mapping uncalibrated confidence to calibrated confi-
dence on a comparatively small validation set e.g., temper-
ature scaling, vector scaling (Guo et al., 2017), using spline
(Gupta et al., 2020), MS-ODIR and Dir-ODIR (Kull et al.,
2019), mix-n-match (Zhang et al., 2020), GPcalib (Wenger
et al., 2020), and intra-order preserving functions (Rahimi
et al., 2020). While these techniques provide improved
average confidence calibration, poorly calibrated examples
remain.

To address this issue, techniques that utilize redundancy
in the example space have been proposed (Bahat and
Shakhnarovich, 2020; Thulasidasan et al., 2019; Patel et al.,
2019). The premise behind these techniques is that utilizing
additional information on the current sample, its confidence
calibration can be improved. Most of these techniques aug-
ment the training dataset with examples on the same man-
ifold and re-train a model on the augmented dataset (Thu-
lasidasan et al., 2019; Patel et al., 2019). While other tech-
niques (Bahat and Shakhnarovich, 2020), avoid retraining
by assuming there exist well calibrated examples within the
manifold and perform filtering of a sampling of the mani-
fold confidences. While evaluating the confidence of an
individual sample remains a challenge – since most bench-
mark datasets do not contain confidence labels (only class
labels) – these techniques do generally show marked im-
provement in expected confidence calibration consistent
with a reduced number of poorly calibrated samples. How-
ever, manifold-based techniques have severe shortcomings
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Figure 1: Example of Original and Transformed Image

when applied to datasets with large input spaces. Augment-
ing the training dataset and retraining a model scales poorly
as the input space (and manifold dimensionality) increases.
Similarly, filtering sampled confidences assumes that the
original classifier is calibrated for a majority of the mani-
fold, which becomes less likely as manifold dimensional-
ity increases. Consequently, manifold-based calibration of
models for large input spaces remains a challenge.

In this work, we present Recursive Lossy Label-Invariant
Calibration (or ReCal) as a scalable manifold-based post-
hoc confidence calibration algorithm that maintains the ac-
curacy of the original classifier and scales to large datasets
(e.g. ImageNet). To overcome the scalability issues of
other manifold-based techniques, we only consider label-
invariant transformations that are expected to result in a de-
creased confidence due to discriminatory information loss
– i.e., lossy label-invariant transformations. For example,
consider zooming out an image of a dog with the scale fac-
tor of 0.5x as shown in Figure 1. After the transforma-
tion, the image still contains the dog, but the dog becomes
smaller and harder to recognize. Therefore, we should be
able to identify the dog but with less confidence. Con-
sidering this intuition in the context of estimating confi-
dence, a (well-calibrated) classifier should return the same
prediction with smaller confidence after applying a lossy
label-invariant transformation. Likewise, if we group ex-
amples based on the prediction and confidence change af-
ter such transformations, we expect that the examples in
the same group will have similar properties respect to the
classifier and confidence estimation. In other words, ex-
amples in each group require a similar amount of adjust-
ment, which may be different than the adjustment needed
for examples in other groups. This intuition – lossy label-
invariant grouping – forms the premise of ReCal, and is
discussed in detail in Section 4.

Leveraging group-wise calibration, we propose ReCal as
a scalable post-hoc calibration algorithm in Section 5.
Specifically, the proposed algorithm recursively leverages
lossy label-invariant transformations to re-group images
and perform group-wise calibration. Different from other
approaches that aim to retrain a model on the augmented
training set (Patel et al., 2019; Thulasidasan et al., 2019),
our proposed algorithm does not change the predictions and
thus retains the original prediction accuracy while adjusting

the confidence of the predictions.

We demonstrate the scalability and performance of the
proposed algorithm by applying it to ImageNet, and also
compare ReCal with other calibration algorithms on CI-
FAR10/100, ImageNet in Section 6. On multiple models
e.g., LeNet5, DenseNet, ResNet, ResNet SD, and Wide
ResNet, on the datasets, we compare Expected Calibra-
tion Error (ECE) (Naeini et al., 2015), Brier score (Brier,
1950) and time for learning a calibration map. On the large
scale image dataset, ImageNet, ReCal can be applied to the
dataset in terms of time, and it outperforms other calibra-
tion algorithms such as temperature scaling, vector scaling
(Guo et al., 2017), MS-ODIR, Dir-ODIR (Kull et al., 2019)
on DenseNet161 and ResNet152 models. Besides Ima-
geNet, ReCal shows the best performance or the second-
best performance for seven of ten models on CIFAR10/100.

The contributions of this paper are summarized as follows:

• introducing lossy label-invariant grouping and empir-
ically demonstrating that each group needs different
calibration;

• presenting ReCal, a scalable post-hoc calibration al-
gorithm based on lossy label-invariant transformation,
which can be applied to a large-scale datasets;

• evaluating ReCal in comparison to other publicly re-
leased post-hoc calibration algorithms using multiple
datasets and models.

The remainder of this paper is structured as follows. In
the next section, we present the related work on confidence
calibration. In Section 3, we present the problem statement
considered herein. Section 4 describes lossy label-invariant
grouping and its effectiveness. We then propose ReCal in
Section 5, present the experimental results in Section 6, and
conclusions in Section 7.

2 Related Work

While a complete review of all confidence calibration tech-
niques is beyond the scope of this work, in this section we
selectively review those techniques most related to the pro-
posed approach. In the following, we consider confidence
calibration techniques leveraging Bayesian uncertainty es-
timation, calibration via re-training, post-hoc calibration
maps, and manifold-based calibration.

Bayesian uncertainty estimation. One approach to confi-
dence calibration is to provide uncertainty estimation with
Bayesian framework (Gal and Ghahramani, 2016; Zhang
et al., 2017; Khan et al., 2018; Chang et al., 2019). While
Bayesian techniques can provide very accurate calibration,
they suffer from computational limitations associated with
estimating the posterior distribution used for uncertainty
estimation.
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Calibration via re-training. Another type of approach
targets training a well-calibrated classifier (Kumar et al.,
2018; Lakshminarayanan et al., 2017; Seo et al., 2019; Tran
et al., 2019; Müller et al., 2019). A potential pitfall of cali-
bration via re-training is that the accuracy of the prediction
can change. Moreover, many of these approaches require
training sophisticated networks on large training datasets,
which may consume significant time and computational re-
sources.

Post-hoc calibration maps. Post-hoc methods address
the calibration problem without requiring model retrain-
ing. These approaches employ binning methods such as
Histogram Binning (Zadrozny and Elkan, 2001), Bayesian
Binning into Quantiles (Naeini et al., 2015), Mutual Infor-
mation Maximization-based Binning (Patel et al., 2020) or
train a function mapping from original confidence to cali-
brated one on validation data which is smaller compared to
the training data. For training a mapping function, several
techniques have been proposed (Platt et al., 1999; Zadrozny
and Elkan, 2002; Guo et al., 2017; Rahimi et al., 2020;
Gupta et al., 2020; Kull et al., 2019; Zhang et al., 2020;
Wenger et al., 2020). Most notably, Guo et al. (2017), intro-
duces temperature scaling which transforms original logits
to calibrated logits with a single parameter. Besides tem-
perature scaling, intra-order preserving function (Rahimi
et al., 2020), Dirichlet calibration with ODIR regulariza-
tion (Kull et al., 2019), splines (Gupta et al., 2020), la-
tent Gaussian function (GPcalib) (Wenger et al., 2020), and
ETS, IRM, IROvA-TS (Zhang et al., 2020) have been pro-
posed. Depending on the mapping function, some of the
approaches such as temperature scaling, intra-order pre-
serving function, splines, ETS and IRM preserve the ac-
curacy, while the others like matrix scaling, vector scaling,
IROvA-TS, GPcalib and Dirichlet calibration do not pre-
serve the original model accuracy.

Manifold-based calibration. Several manifold-based
confidence calibration have been proposed (Bahat and
Shakhnarovich, 2020; Thulasidasan et al., 2019; Patel et al.,
2019; Lee et al., 2017; Verma et al., 2019). Bahat and
Shakhnarovich (2020) augments test data using transfor-
mations to calibrate confidence, while Thulasidasan et al.
(2019) and Patel et al. (2019) augment data by interpolat-
ing existing data and using an auto-encoder based model,
respectively. Other techniques augment the training data
with samples from the manifold and retrain the model (Lee
et al., 2017; Verma et al., 2019). Manifold-based algo-
rithms can improve worst-case calibration errors as shown
by their ability to address over-confident prediction on out-
of-distribution samples. However, they generally suffer
from scalability issues as discussed in Section 1.

3 Problem Statement

In this paper, we aim to develop a post-hoc calibration al-
gorithm which addresses the worst-case confidence error

that does not change accuracy on a multi-class classifica-
tion task. Consider a multi-class classification task on data,
D = {(xn, yn)}ND ∼ X × Y , where X is an input space
and Y is a label set, {1, 2, . . . ,K}. Let f : X → RK

denote a multi-class classifier. A neural network classi-
fier typically has a softmax output layer as a final layer,
which returns a vector p for the given input x. Here,
p = f(x) = {p1, p2, . . . , pK}. Each pi is the estimated
probability of a label i, and the classifier chooses the la-
bel whose probability is the maximum. Consequently, the
prediction ŷ = argmaxi{p} has confidence p̂ = maxi{p}.

A classifier f is calibrated if confidence is equal to accu-
racy given the confidence. More formally,

P[y = k|pk = p′] = p′ (1)

where, p = f(x), k = argmaxi{p} for all (x, y) ∈ D and
for all p′ ∈ [0, 1]. Here, the difference between the both
sides is estimated by Expected Calibration Error (ECE)
(Naeini et al., 2015) which is the weighted average of the
differences over bins. ECE is computed by first splitting
the confidence range with equal size bins, and calculating
the difference between average confidence and average ac-
curacy of each bins, and finally, computing an average of
those differences weighted by the number of samples in
each bins. More formally,

ECE =

M∑
i=1

|Bi|
|D|

(|accuracy(Bi)− confidence(Bi)|)

(2)
where, M is the number of bins, B1, . . . , BM are bins
which equally divides the interval [0, 1], and accuracy(Bi)
is the average accuracy of examples in bin Bi, and
confidence(Bi) is the average confidence of examples in
bin Bi.

Ideally, we would like to minimize the worst-case confi-
dence error, however, this is impossible to quantify with
the current datasets that lack ground truth calibration val-
ues for the labels. As a surrogate, and consistent with other
works in the literature, we rather aim to minimize ECE.
Therefore, we would like to learn a calibration map which
transforms the original confidence (or logits) to calibrated
one which minimize ECE without affecting original accu-
racy.

4 Lossy Label-Invariant Grouping

It is reasonable to assume that different examples may
need different level of adjustment for the calibration, i.e.,
some examples require more adjustment than others. Con-
sequently, we would like to group inputs based on some
measure of adjustment needed so that we can apply differ-
ent level of adjustment to each group. In other words, we
would like to apply more adjustment when predictions are
very mis-calibrated, and adjust less when predictions near
calibration.
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Figure 2: Rank Distribution of Each Group with Two
Transformations. Each Bar Represents Rank Distribution
of Each Group over Different Transformation Parameters.

We utilize a subset of transformations that do not change
the label called label-invariant transformations. Specifi-
cally, we choose label-invariant transformations which in-
duce a loss in discriminatory information – i.e., lossy label-
invariant transformations. As an example, consider an im-
age classification task. The zoom-out transformation and
brightness transformation are the examples of lossy label-
invariant transformations. These two transformation do
not change label, but reduce discriminatory information
by making an image smaller or darker. Therefore, after
such transformations, a (well-calibrated) classifier should
not change its prediction but should become less confident
on its prediction.

Our approach, as described in Algorithm 1, begins by ap-
plying a lossy label-invariant transformation to the inputs,
and group based on the observed prediction and confidence
changes after the transformation. There can be two possible
outcomes to each observation, i.e., prediction change vs.
not change, and confidence increase vs. not increase, and
in total there can be four possible combinations as shown
in Table 1. We perform lossy label-invariant grouping
by comparing the prediction and confidence of the trans-
formed input with the original input, and group based on
the comparison result. More formally, group number k for
an input is

k = 2× 1(ŷ=ŷt) + 1(p̂≥p̂t) + 1 (3)

where, ŷ, p̂ are the prediction and confidence for the orig-
inal input, ŷt, p̂t are the prediction and confidence for the
transformed input, and 1(·) is 1 if (·) is true, and 0, other-
wise.

To demonstrate the effectiveness of our Lossy Label-
Invariant Grouping Algorithm we consider an image clas-
sification task using ResNet152 model on ImageNet. We
choose two image transformations, zoom-out and bright-
ness. These two transformations have one parameter which
determines how much transformation will be applied. A

Algorithm 1 Lossy Label-Invariant Grouping
1: procedure GRP INPUT(z, zt)
2: Input: z : (Nv × K) Original inputs logits; zt :

(Nv ×K) Transformed inputs confidence logits
3: ŷ ← argmax(p, axis=1)
4: ŷt ← argmax(pt, axis=1)
5: p̂← softmax(z, axis=1)ŷ

6: p̂t ← softmax(z, axis=1)ŷ

7: g 1 idx = (ŷ 6= ŷt) ∧ (p̂t > p̂)
8: g 2 idx = (ŷ 6= ŷt) ∧ (p̂t ≤ p̂)
9: g 3 idx = (ŷ = ŷt) ∧ (p̂t > p̂)

10: g 4 idx = (ŷ = ŷt) ∧ (p̂t ≤ p̂)
11: return g 1 idx, g 2 idx, g 3 idx, g 4 idx
12: end procedure

Table 1: Grouping Inputs Based On Prediction and Con-
fidence Change. ŷ, p̂ Are the Prediction and Confidence
for Original Input, and ŷt, p̂t Are the Prediction and Confi-
dence for Transformed Input.

p̂ < p̂t p̂ ≥ p̂t
ŷ 6= ŷ Group 1 Group 2
ŷ = ŷ Group 3 Group 4

zoom-out transformation with smaller parameter value will
return the smaller image and a brightness transformation
with smaller parameter value will yield the darker image.

We randomly select parameter values between 0.1 and 0.9,
observe label prediction change and confidence change for
validation images, and group images into four different
groups as shown in Table 1. For each parameter, we com-
pute and rank the ECE values among four groups, and
draw the distribution of the ranks for each transformation
as shown in Figure 2 . For the reference, ECE values and
number of images of each group for the two transforma-
tions are displayed in the supplementary material.

In the figure, the x-axis is for the group index and the y-axis
is for the proportion of transformation parameters which
has the specific rank for the specific group. For example,
in the left figure, G1 has about 80% for ‘Rank 4’, 10% for
‘Rank 3’, and 10% for ’Rank 2’. This means that for about
80% of all sampled parameters, Group 1 has the worst ECE
among the four groups.

As shown in Figure 2 (Left), with zoom-out transforma-
tion, for about 80% of parameters, Group 4 which repre-
sents that prediction does not change and confidence does
not increase, has the best ECE, i.e., rank one. On the
other hand, Group 1 which corresponds to the case that pre-
diction changes and confidence increases shows the worst
ECE, i.e., rank four. The similar pattern appears on the
brightness transformation as shown in Figure 2 (Right).
With brightness transformation, Group 4 has the best ECE
for about 80% of parameters, and Group 1 has the worst
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ECE for about 50% of parameters. Group 2 and Group 3
show a little different pattern between two transformations.
For zoom-out transformation, Group 2 has better rank than
Group 3 with about 80% of each group is either rank 2 or 3.
On the other hand, for brightness transformation, Group 2
has worse rank than Group 3. It is hard to decide which one
requires more adjustment, but in general, these two groups
should be calibrated differently.

These results empirically demonstrate that lossy label-
invariant grouping partitions the inputs into groups that
require different amounts of adjustment. Group 4 inputs
which match our intuition tend to have the best ECE, i.e.,
requires the least adjustment, while Group 1 inputs which
opposite to our intuition show the worst ECE, i.e., requires
the most adjustment. Furthermore, input grouping differs
depending on the transformation, as shown by the input dis-
tribution over groups for different transformations in Table
4 and 5 in supplementary material. Consequently, in the
following section, we design an algorithm that utilizes dif-
ferent lossy label-invariant transformations at each iteration
to perturb the groupings and perform recursive calibration.

5 Recursive Lossy Label-Invariant
Calibration (ReCal)

As illustrated in Figure 3 and Algorithm 2, ReCal consists
of 3 steps: initialization, iterative group-wise calibration,
final calibration. In the following we describe each of these
steps in detail. We conclude this section by analyzing the
convergence of ReCal, presenting a runtime implementa-
tion of ReCal and a discussion of its limitations.

5.1 Initialization

To initialize ReCal, a transformation pool is prepared by
sampling N transformations {t1, . . . , tN} from possible
transformations. After a transformation pool is prepared,
ReCal computes base logits of the original inputs and trans-
formed inputs. The logits of the original inputs are obtained
by feeding the original inputs to the original confidence es-
timator. For the logits of the transformed inputs, the orig-
inal inputs are transformed by the sampled N transforma-
tions, and fed to the same original confidence estimator.

5.2 Iterative Group-Wise Calibration

The following three steps will be repeated up to the max-
imum iteration, L, or until the stopping condition is satis-
fied: (i) Transformation sampling; (ii) Lossy label-invariant
grouping; (iii) Temperature scaling and logits update. This
algorithm is described in Line 7 - 15 of Algorithm 2 and
each step is detailed below.

Transformation sampling. At each iteration l, a transfor-
mation tl is randomly sampled with replacement from a
transformation pool {t1, . . . , tN}.

Lossy label-invariant grouping. Once a transformation tl

is sampled, inputs in a validation set will be grouped using
the lossy label-invariant grouping algorithm presented in
Section 4.

Temperature scaling and logits update. For each
lossy label-invariant group, temperature scaling (Guo
et al., 2017) is applied, and temperature parameters,
σ̂l
1, σ̂

l
2, σ̂

l
3, σ̂

l
4, are generated – one corresponding to each

group. Each group will have different number of inputs
and overfitting can occur if the number of inputs is small.
To safeguard against overfitting, we modify the tempera-
ture parameter based on the number of inputs in the group
as shown in Equation 4.

σl
k =

(
1− |Gk|
|Dval|

)
× 1 +

|Gk|
|Dval|

× σ̂l
k (4)

where, |Gk| is the number of inputs in group k and |Dval|
is the number of inputs in validation set. For example, if all
the inputs belong to Gk, the temperature parameter from
the temperature scaling will be used, and if there is no in-
puts in Gk, the temperature parameter is equal to 1, which
means no calibration will be applied to Gk. With these
modified temperature parameters, both original inputs log-
its and transformed inputs logits are computed. These tem-
perature parameters and updated logits are stored for the
test time and the later iterations, respectively.

Convergence Analysis Each iteration of ReCal aims to
minimize the ECE within each of the four groups. Since
σi = 1 is always a feasible solution for each group-
wise calibration – corresponding to no change in calibra-
tion error – it follows that the ECE within each group is
non-increasing. Further, the population ECE is also non-
increasing since it is a weighted average of the group-wise
ECE. Thus, the likelihood of satisfying the ReCal exit con-
dition – which represents convergence of the ECE – in-
creases with each iteration. While this assures an even-
tual exit, the rate of convergence is domain specific and
depends on the sample data as well as the transformations
employed.

5.3 Runtime Confidence Calculation using ReCal

After the calibration on validation set finished, inputs in
test set can be calibrated as described in Algorithm 3. Be-
cause the transformation pool and a transformation at each
iteration are already prepared in the calibration step, apply-
ing calibration step starts with computing base logits. After
the base logits of original inputs and transformation inputs
are ready, the iterative procedures will be repeated for L∗

iterations, as determined in the calibration step.

Specifically, the iterative steps at runtime uses L∗ sampled
transformations and 4 × L∗ temperature parameters from
the calibration step; at each iteration, one transformation is
sampled and a temperature parameter is computed for each
of the four groups. For each iteration, inputs are grouped
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Figure 3: Illustration of Recursive Lossy Label-Invaraint Calibration (ReCal)

Algorithm 2 Recursive Lossy Label-Invariant Calibration (ReCal)
1: procedure RE CAL(ts,X, y,N, L, δ)
2: Input: ts: (Nallow × 1) Transformations specification; X: (Nv × p). Inputs in validation set; y:(Nv × 1). True

labels; N :(1× 1). Number of transformations; L:(1× 1). Maximum iteration number; δ:(1× 1). Stopping iterations
threshold

3: {t1, . . . tN} ← Build a transformation pool based on ts
4: z ← Base logits for original inputs
5: zt1 , . . . ztN ← Base logits for transformed inputs
6: for l = 1, 2, . . . , L do
7: tl ← Randomly select a transformation from {t1, . . . tN}
8: Group logits z and ztl using grp img in Algorithm 1
9: Apply temperature scaling to group 1 - 4 and obtain temperature parameters, σ̂l

1, σ̂
l
2, σ̂

l
3, σ̂

l
4,

10: Compute temperature parameters σl
1, σ

l
2, σ

l
3, σ

l
4 using Equation 4

11: Calibrate logits for original inputs, z1, z2, z3, z4 and logits for transformed inputs, z1tl , z
2
tl , z

3
tl , z

4
tl

12: Update logits for original inputs z using z1, z2, z3, z4, and logits for transformed inputs ztl using z1tl , z
2
tl , z

3
tl , z

4
tl

13: if |ECEl − ECEl−1| < δ then
14: return σ1

1 , σ
1
2 , σ

1
3 , σ

1
4 , . . . , σ

l
1, σ

l
2, σ

l
3, σ

l
4, t

1, . . . , tl, l
15: end if
16: end for
17: end procedure

Algorithm 3 Runtime Confidence Calculation using ReCal

1: procedure APPLY CAL(X,σ1
1 , σ

1
2 , σ

1
3 , σ

1
4 , . . . , σ

L∗

1 , σL∗

2 , σL∗

3 , σL∗

4 , t1, . . . , tL
∗
, L∗)

2: Input: X: (Nte×p). Test set inputs; σ1
1 , σ

1
2 , σ

1
3 , σ

1
4 , . . . , σ

L∗

1 , σL∗

2 , σL∗

3 , σL∗

4 : (4L∗×1). Temperature parameters
;t1, . . . , tL

∗
: (L∗ × 1). Sampled transformation for each iteration; L∗:(1× 1). Iteration number

3: z ← Base logits for original inputs
4: zt1 , . . . ztN ← Base logits for transformed inputs
5: for l = 1, 2, . . . , l∗ do
6: Calibrate original inputs logits, z1, z2, z3, z4

7: Calibrate transformed inputs logits, z1tl , z
2
tl , z

3
tl , z

4
tl

8: Update original inputs logits z using z1, z2, z3, z4

9: Update transformed inputs logits ztl using z1tl , z
2
tl , z

3
tl , z

4
tl

10: end for
11: return updated logits for original inputs
12: end procedure
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using the sampled transformation, and confidences for the
inputs are adjusted using the temperature parameters as-
signed to the group of each input.

5.4 Limitations of ReCal

ReCal has a few limitations. First, we have to have a label-
invariant transformation which lose information, which is
necessary for lossy label-invariant grouping step. However,
it is not hard to find such transformations. For example, in
image classifications, besides zoom-out transformation and
brightness transformation used in this paper, image blur-
ring / pixalization, lossy compression, and random pixel
changes are other possible examples. Regarding classifi-
cation on time-series data such as video and medical data,
introducing missing data is a type of lossy label-invariant
transformation since the act of losing a frame or occasional
data sample doesn’t change the state of the environment or
patient.

Next, ReCal needs to consider N possible transformed in-
puts which may be inefficient memory-wise. However,
what we mainly use is the logits not the inputs, since once
we compute the base logits at the beginning, we do not use
the inputs anymore. This logits are much smaller compared
to the inputs because the logits size is equal to the number
of classes and in classification task. For example, each Im-
ageNet input data has a dimension of 224× 224× 3 which
takes about 588 KB, while the logits have a dimension of
1, 000, which is about 3.9 KB.

6 Experiments
We apply ReCal to multiple models on three datasets to
compare its calibration performance and scalability. In de-
tail, we train or obtain models for each dataset, and cali-
brate confidence using ReCal and other baselines. We then
compare the calibration performance using two metrics and
the time for learning a calibration map to evaluate the scal-
ability. The details of datasets, model, baselines, metrics
and results are described in the following subsections.

6.1 Experimental Setup

This subsection will explain the datasets, models, base-
lines, and evaluation metrics for the experiments. In detail,
the first subsection briefly describes datasets and models
used for each dataset. The next subsection is for describing
what other calibration algorithms is used as baselines, and
the final subsection illustrates the evaluation metrics.

Datasets and Models. We perform experiments on three
datasets: CIFAR10, CIFAR100 (Krizhevsky et al., 2009),
and ImageNet (Deng et al., 2009). For CIFAR10/100,
we use DenseNet40 (Huang et al., 2017), LeNet5 (Le-
Cun et al., 1998), ResNet110 (He et al., 2016), ResNet110
SD (Huang et al., 2016), and WRN-28-10 (Zagoruyko and
Komodakis, 2016). For ImageNet, we use DenseNet161

(Huang et al., 2017) and ResNet152 (He et al., 2016). Com-
plete details of the datasets and models are provided in the
supplementary material.

Competing Approaches for Baseline Comparisons. We
compare ReCal with various other calibration methods
such as temperature scaling, vector scaling, MS-ODIR,
Dir-ODIR. Among those methods, temperature scaling
keeps the original accuracy, and other methods change the
accuracy. We implement temperature scaling, and obtain
codes for vector scaling, MS-ODIR, and Dir-ODIR from
the paper’s repository (Kull et al., 2019).

Evaluation Metrics. Our main goal is minimizing the
worst-case confidence error, however, as described in Sec-
tion 3, it is impossible to quantify due to the absence of
available datasets with confidence estimates for the label.
Instead, we aim to minimize ECE, and our main evaluation
metric for the experiments is ECE. Besides ECE, we also
compare approaches using Brier score (Brier, 1950), which
considers accuracy as well. For completeness, definitions
of ECE and Brier score are provided in the supplementary
material. Lastly, for assessing the scalability, we compute
the learning time of a calibration map.

6.2 Results

We analyze the results in terms of calibration performance
and time for learning a calibration map. First, we com-
pare the calibration performance in terms of ECE and brier
score. ECE is for evaluating how well each algorithms cal-
ibrate confidence. Brier score is for the similar evaluation,
but, this metric considers the prediction accuracy together.
Second, we present the time for learning a calibration map
so that we assess the scalability.

6.2.1 Calibration Performance
We display the calibration performance of various methods
in Table 2 and 3. Table 2 and 3 display ECE and Brier
score, and test error rates are shown in supplementary ma-
terial. The values with bold and with underline represent
the best and the second best result, respectively.

For ReCal, we show the three different transformation
pools: (z, .1-.9, 20), (z, .5-.9, 10), (b, .1-.9, 20). The first
parameter means the transformation type; z and b mean
zoom-out transformation and brightness transformation, re-
spectively. Next parameter represents the range of trans-
formation parameters, the range is either from 0.1 to 0.9 or
from 0.5 to 0.9. The last parameter corresponds to the num-
ber of transformation. We use 20 transformations when we
have the range of from 0.1 to 0.9, and 10 transformations
for the range of from 0.5 to 0.9.

ECE results. Table 2 shows ECE values of all datasets and
models. For CIFAR10, vector scaling, Dir-ODIR, and Re-
Cal shows the best performance on 2/1/2 models, respec-
tively. For CIFAR100, except LeNet5 and WRN-28-10,
ReCal shows the best performance. Among our methods,
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Table 2: ECE

Dataset Model Uncal. TS VS MS-ODIR Dir-ODIR ReCal
(z, .1-.9, 20)

ReCal
(z, .5-.9, 10)

ReCal
(b, .1-.9, 20)

CIFAR10 DenseNet40 0.052026 0.007037 0.004438 0.005161 0.003943 0.010143 0.008721 0.005892
CIFAR10 LeNet5 0.018170 0.011963 0.009174 0.014147 0.010525 0.011785 0.010507 0.010669
CIFAR10 ResNet110 0.045646 0.008770 0.009442 0.008829 0.008366 0.008986 0.008206 0.009177
CIFAR10 ResNet110 SD 0.053770 0.011407 0.008552 0.010187 0.009369 0.011973 0.012103 0.012845
CIFAR10 WRN 28-10 0.025076 0.009709 0.009564 0.009175 0.009429 0.009092 0.012459 0.010261
CIFAR100 DenseNet40 0.172838 0.015435 0.026634 0.029628 0.018949 0.015398 0.011713 0.018059
CIFAR100 LeNet5 0.009991 0.021064 0.015524 0.013149 0.014172 0.019196 0.018426 0.019367
CIFAR100 ResNet110 0.142223 0.009101 0.029982 0.034519 0.023109 0.012142 0.008487 0.010614
CIFAR100 ResNet110 SD 0.122932 0.009310 0.035832 0.035478 0.020747 0.009987 0.014375 0.007918
CIFAR100 WRN 28-10 0.053396 0.043703 0.045178 0.035509 0.034604 0.037270 0.035279 0.035435
ImageNet DenseNet161 0.056384 0.019873 0.023286 0.036785 0.047707 0.013348 0.014474 0.016981
ImageNet ResNet152 0.049142 0.020069 0.020672 0.034736 0.039748 0.013869 0.013491 0.017483

Avg.Rank 7.42 4.33 4.58 4.75 3.67 3.83 3.17 4.25

Table 3: Brier Score

Dataset Model Uncal. TS VS MS-ODIR Dir-ODIR ReCal
(z, .1-.9, 20)

ReCal
(z, .5-.9, 10)

ReCal
(b, .1-.9, 20)

CIFAR10 DenseNet40 0.013585 0.012330 0.012300 0.012256 0.012296 0.012225 0.012231 0.012324
CIFAR10 LeNet5 0.037836 0.037792 0.037748 0.037745 0.037706 0.037395 0.037403 0.037784
CIFAR10 ResNet110 0.011537 0.010439 0.010378 0.010382 0.010350 0.010322 0.010317 0.010441
CIFAR10 ResNet110 SD 0.015472 0.014395 0.014325 0.014231 0.014302 0.014212 0.014140 0.014425
CIFAR10 WRN 28-10 0.006731 0.006357 0.006380 0.006342 0.006336 0.006300 0.006344 0.006363
CIFAR100 DenseNet40 0.004862 0.004329 0.004346 0.004333 0.004318 0.004304 0.004302 0.004332
CIFAR100 LeNet5 0.007581 0.007588 0.007587 0.007580 0.007567 0.007557 0.007543 0.007581
CIFAR100 ResNet110 0.004521 0.004144 0.004180 0.004178 0.004149 0.004130 0.004119 0.004149
CIFAR100 ResNet110 SD 0.004344 0.004064 0.004046 0.004045 0.004047 0.004035 0.004028 0.004067
CIFAR100 WRN 28-10 0.002929 0.002915 0.002948 0.002901 0.002898 0.002913 0.002913 0.002926
ImageNet DenseNet161 0.000323 0.000319 0.000316 0.000313 0.000324 0.000318 0.000319 0.000319
ImageNet ResNet152 0.000305 0.000302 0.000301 0.000299 0.000307 0.000302 0.000302 0.000302

Avg.Rank 7.54 5.54 5.25 3.42 4.04 2.17 2.25 5.79

for most cases, (z, .5-.9, 10) shows the best performance.
For ImageNet, ReCal has the best ECE for both of models;
specifically, (z, .1-.9, 20) and (z, .5, .9, 20) are the best for
each model.

Brier score results. Brier scores are displayed in Table
3. For CIFAR10/100, ReCal almost always shows the
best performance. The only exception is when Dir-ODIR
is applied to WRN 28-10 on CIFAR100. For ImageNet,
MS-ODIR shows the best performance and vector scaling
shows the second-best value. ReCal is slightly higher than
those values. The reason that ReCal shows worse Brier
score compared to vector scaling and MS-ODIR is that
those two calibration methods increase the accuracy. Brier
score considers both of accuracy and calibration, and the
increase of accuracy results in the better Brier score.

Overall Comparison. Based on ECE results (Table 2),
ReCal outperforms other algorithms on many models and
dataset, and especially on ImageNet it always outperforms
all other algorithms. Based on Brier score results, Re-

Cal almost always outperforms other algorithms except a
few case. With the consideration of the learning time as
well, ReCal is scalable and also effective for large-scale
dataset, and works well for the other medium-size dataset
(CIFAR10/100) as well.

Statistical Analysis. For Table 2 and 3, we perform Fried-
man test. The last row of each table shows the average rank
of each calibration algorithm. From the Friedman test, the
p-values for each table are 0.0016 and 0.0000. Based on
these p-values, we can say that the differences among the
calibration algorithms are significant.

Comparison between ReCal settings. We show the three
different settings of ReCal; two different transformations,
and two different transformation parameter ranges for
zoom-out transformation. We compare these three settings
in terms of two aspects. First, between brightness and
zoom-out transformation, zoom-out calibrates better, espe-
cially, on ImageNet. We conjecture that the reason is re-
lated to the fact that zoom-out is more effective in Lossy
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Label-Invariant Grouping as described in Section 4. Next,
for zoom-out transformations, the appropriate parameter
range is related to the original image resolution. Specifi-
cally, a scale factor range of between 0.5 and 0.9 generally
shows better performance on CIFAR10/100, and a scale
factor range of 0.1 and 0.9 is better on ImageNet based
on ECE and Brier score. Therefore, we suggest to use the
small zoom-out scale factors for only large images.

Choice of Transformations. We think that a transforma-
tion type should be chosen based on the data type. For ex-
ample, we think that image transformations such as zoom-
out, brightness, blur, and random pixel change can be used
for images, and random data drop is one example of sug-
gested lossy label-invariant transformations for time-series
data. We also conjecture that transformation parameter is
connected to the data size. As shown in experimental re-
sults, for small images, it would be better to use less lossy
zoom-out transformation. Similarly, it would be better to
drop less frame/sample for short time-series data.

6.2.2 Learning Time

We also compute the learning time of each calibration al-
gorithms on various datasets and models, and the result is
shown in supplementary materials.

Temperature scaling is generally the fastest algorithm, and
the next order is vector scaling, our method, Dir-ODIR,
and MS-ODIR. Because MS-ODIR and Dir-ODIR train
multiple calibration models to search the optimal hyper-
parameters, its calibration time is high compared to other
methods. Those two algorithms train less number of cali-
bration models for CIFAR100 compared to CIFAR10. Sim-
ilarly, we reduce the number of calibration models further
for ImageNet, since it is larger than the two datasets.

For ImageNet, our method takes about 51,000 seconds, or
14.1 hours for DenseNet161 and 71,000 seconds, or 19.8
hours for ResNet152. Even though this is slower than other
methods like temperature scaling, and vector scaling, we
think that our method can be applied to ImageNet in terms
of learning time. The slowest time is 380,000 seconds, or
4.4 days for DenseNet161, and 220,000 seconds, or 2.5
days for ResNet152.

7 Conclusion

In this paper, we propose an accuracy preserving post-hoc
calibration method based on a label-invariant image trans-
formation. ReCal exploits the properties of label-invariant
transformations to group inputs, and applies different tem-
perature scaling to each group. Because ReCal is based
on temperature scaling, it preserves the original classifier
accuracy. In addition, it has more expressiveness com-
pared to original temperature scaling because it uses mul-
tiple temperature scaling coefficients. Experiments on CI-
FAR10/100 and ImageNet datasets show that ReCal can be

applied to the large-scale ImageNet, and outperforms other
methods on those datasets including ImageNet.

For the future work, incorporating multiple types of trans-
formation type may improve the calibration performance.
In this paper, we use one type of transformation at a time,
but, different transformation utilizes different information
in example space, and combination of multiple transforma-
tion type may results in improvements. For example, we
can apply brightness transformation and zoom-out transfor-
mation together, or we can also apply Gaussian blur after
the transformations.

Additionally, ReCal can be extended to other types of
dataset as long as appropriate transformation exists. For
example, we can apply ReCal to time-series data classifica-
tion. We can consider a transformation of eliminating some
data at random time point. This transformation is a label-
invariant transformation which decrease confidence, and
ReCal can be applied to calibrate confidence. Lastly, be-
cause more accuracy-preserving post-hoc approaches have
been suggesting, more comparison with such new state-of-
the-art calibration algorithms will be another future work.
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